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1 Introductory Remarks

This lecture is intended to be a brief introduction to what I consider to be the
principal ”must know” characteristics of plasma. It is, in no way, intended to
be a comprehensive discussion of the topic. For more advanced introductions
to plasma physics, there are several good resources: eg. Introduction to Plasma
Physics (F. Chen), Plasma Physics (R, Goldston, P. Rutherford). There are
also free online lecture notes of Intro to Plasma courses: R. Fitzpatrick at UT
Austin and R. Parker at MIT (linkable on the pdf of this document).

2 Plasma Characteristics

When gas becomes ionized it becomes a plasma. Typically, what we consider to
be a plasma is actually not fully ionized. In many cases, only a small fraction of
the gas is ionized. These are called (not surprisingly) weakly ionized plasmas,
as opposed to fully ionized plasmas (deep in the sun or inside a magnetically
confined fusion device). The degree of ionization is determined by the Saha
Equation:

ni
nn
≈ 2.4× 1021T

3/2

ni
e−Ui/kBT (1)

Where ni and nn are the density of the ions and the neutrals in [m−3], T is the
gas temperature in Kelvin, kB is Boltzmann’s constant and Ui is the ionization
energy, that is, the energy required to remove the outermost electron. As a
comparison, at standard temperature and pressure, nitrogen has a degree of
ionization of:

ni
nn
≈ 10−122. (2)

As the temperature starts rising to the order of Ui (that is, to around a few
thousands degrees K), the ionization becomes non-negligible and the gas be-
comes a plasma.

1

http://farside.ph.utexas.edu/teaching/plasma/plasma.html
http://farside.ph.utexas.edu/teaching/plasma/plasma.html
http://ocw.mit.edu/courses/nuclear-engineering/22-611j-introduction-to-plasma-physics-i-fall-2006/


3 Review of basic mechanics equations

Disregarding magnetic forces, the basic equation of motion of a given particle of
mass m1 and electric charge q1 when it comes a distance r1,2 to another charged
particle of mass m2 and charge q2 is given by the equation:

m1~a = Σ~F = ~FG + ~FE =

[
−Gm1m2

r2
1,2

+
q1q2

4πε0r2
1,2

]
r̂ (3)

where ~FG is the gravitational attraction (hence the minus sign) and ~FE is the
electrical force. G and ε0 are the gravitational constant and the permittivity of
free space respectively. Assuming particle 1 is an electron and particle 2 is a
Deuterium isotope, then the ratio between the forces is:

FE
FG

= 1.1× 1039, (4)

therefore, for laboratory plasmas, gravitational forces can be disregarded and
we can focus only on electric and magnetic forces, otherwise called the Lorentz
Force. Note that gravity IS important for astrophysical plasmas due to the low
degree of ionization and size of the systems.
For a particle of mass m and charge q moving with a velocity ~v through an
electric and magnetic field of magnitudes ~E and ~B respectively, the equation of
motion of the particle is:

~F = m~a = q
[
~E + ~v × ~B

]
(5)

This is the equation we will use when analyzing the mechanics of individual
particles in the plasma.

4 Plasma thought experiment

Let’s begin with a simple picture of a rectangular box of plasma which, as
quasi-neutrality dictates, is composed of electrons and positive ions, as shown
in Figure 1.

4.1 Plasma Frequency

Now suppose we are to move the center of mass of the electrons to the left (or
negative direction in our x̂ axis) a distance ∆x. There is now an accumulation
of electrons on the left and an accumulation of ions on the right. An electric
field is therefore created which points away from the positive slab and towards
the negative slab. In fact, if we imagine the distance between the positive and
negative slabs to be very small compared to the area of the slabs, then the
boundary conditions are too far from our points of interest and we can view
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Figure 1: Moving the center of mass of the electrons with respect to the ions
creates a restoring force

this as an ideal parallel plate capacitor.
The electric field inside an ideal parallel plate capacitor is simply:

~E =
σ

ε0
=
Q/A

ε0
=

(eneA∆x)/A

ε0
=
ene∆x

ε0
(6)

pointing in the negative direction, where σ is the surface charge density (charge
per unit area) of the plate, or slab in this case, Q is the total charge of the slab
and A is its area. Note that the electric field is uniform between the slabs and
it does not depend on their area, only on their thickness and number density.
The most common way of finding the electric field in a capacitor is done using
Gauss’ Law: ∇ · ~E = ρ/ε0, where, in our case, ρ = ene is the volume charge
density. We won’t go into detail here, but this is a very beautiful derivation
which uses the symmetry of the system.
Now, if we have an electron in the middle of the box feeling the electric field,
the force on this electron (which, as with all of the electrons in the slab, has
been shifted in the −x̂ direction), is:

~Fe = me~a = −e ~E =
e2ne(− ~∆x)

ε0
→ ~a = − e

2ne
meε0

~∆x (7)

Where I have incorporated the direction of the shift in to the ∆x vector. But
Equation 7 is simply that of a harmonic oscillator with frequency:

ωpe ≡
√
e2ne
meε0

(8)

3



Figure 2: The pressure difference between two vertical positions is related to
the weight of the slab between them.

Not surprisingly this is the electron plasma frequency of the system. Analo-
gously, for an ion of charge Ze and mass mi, the ion plasma frequency can be
defined as: ωpi =

√
(Z2e2ni)/(miε0). Let’s look at it in a little more detail: If

you look at the thought experiment, for the same displacement, the total charge
in each slab will increase as you increase the electron number density ne, hence
the force is stronger and our oscillation is faster. Also, for the same field, the
acceleration on electrons is greater than that of ions because the same force
(e ~E) is excerpted on such disparate masses. This explains the inverse relation
on mass.

4.2 Thermal Velocity

Now, let’s forget about the thought experiment for a second and think about
the individual moving particles in our system. As energy is given to the plasma
(through external voltages, neutral particle bombardment, microwave heating,
etc.), the particles will start accelerating and colliding with each other. After
enough time, the plasma reaches thermal equilibrium. While we have an intu-
itive idea of what thermal equilibrium means, how does it reflect in the state of
the system?
In the following section we will explore the concept of temperature and relate it
to the density and distribution function of the plasma. This is will mostly follow
the treatment from Feynman’s Lectures Vol.1. While the following analysis is
done on gas, it can be extended to plasmas.
Assume a column of ideal gas in thermal equilibrium (Figure 2). It obeys the
ideal gas law:

pV = NkT (9)

where p is the pressure, V is the volume, N is the total number of particles, T
is the temperature and k = 1.38× 10−23JK−1 is the Boltzmann constant. This
equation can be rewritten as:

p =
N

V
kT = nkT (10)
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where n is the number density of the gas.
If the column is subject to gravity, the pressure at h1 should differ from that

at h1 + ∆h just by the pressure exerted by the weight of the slab between the
2 heights:

p(h1) = p(h1+∆h) +Mg/A (11)

p(h1) = p(h1+∆h) + ρV g/A (12)

p(h1) = p(h1+∆h) +mnA∆hg/A (13)

−(p(h1+∆h) − p(h1)) = mng∆h (14)

−kT (n(h1+∆h) − n(h1)) = mng∆h (15)

∆n

n
= −mg

kT
∆h (16)

where M is the mass of the slab between the horizontal planes, ρ is the mass
density of the gas, V is the volume of the slab, A is the area of the planes, and
m is the mass of the gas particles. Taking the limit of ∆h → 0, Equation 16
leads to:

lnn = C − mgh

kT
(17)

n(h) = n(h=0)e
−mgh

kT (18)

But the mgh numerator in the exponent of the RHS of Equation 18 is simply
the potential energy of the particles at that position (for example, the potential
energy of an electron in a potential Φ: P.E. = −eΦ). So Equation 18 can be
generalized as:

n(~x) = n0e
−P.E.

kT (19)

assuming the potential energy is a function of a generalized position ~x. This is
a powerful equation and we will come back to it in later sections.

Now that we have the dependence of density on position (as a proxy of the
potential energy) in a thermalized gas, let’s explore its dependence on velocity.
We can assume that the dependencies are separable. That is,

n(~x,~v) = f(~x)g(~v) (20)

where f and g are functions of only position and velocity respectively. Going
back to the column of thermalized gas, we will now explore a different question:
What is the relationship between the number of particles that cross vertically
upwards at 2 different planes h1 and h2 as shown in Figure 3? It is clear that not
all particles that cross h1 will reach h2 since some will not have enough energy.
This is the reason that it’s more tenuous at higher P.E. In order to reach, the
particles will have to have a vertical velocity ~v greater than a minimum value ~u
such that: 1/2mu2 = mg∆h. In other words:

N(h2,v>0) = N(h1,v>u) (21)
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Figure 3: The particles crossing plane h2 upwards must have had a vertical
velocity of at least u (where mg∆h = 1/2mu2) as they crossed plane h1

where N(h2,v>0) is the number of particles crossing plane h2 upwards per unit
time, and N(h1,v>u) is the number of particles crossing plane h1 upwards per
unit time with vertical velocity greater than u.
We can look now at the number of particles crossing both planes with the same
velocity restriction: v > 0, that is, we can compare N(h2,v>0) and N(h1,v>0).
As stated in Equation 20, the density can be separated between the positional
dependence and the velocity dependence. Since we’ve imposed the same velocity
restriction (v > 0):

N(h2,v>0)

N(h1,v>0)
=
n(h2)

n(h1)
= e

−mgh
kT = e

−1/2mu2

kT (22)

Finally, we can substitute Equaiton 21 into Equation 22 to get:

N(h1,v>u)

N(h1,v>0)
= e

−1/2mu2

kT (23)

N(v>u)

N(v>0)
= e

−1/2mu2

kT → N(v>u) ∝ e
−1/2mu2

kT (24)

where we have used, again, the separable nature of the density. That is, the
positional dependence cancels out. At any height, the number of particles cross-

ing the vertical plane upwards per unit time is proportional to exp(− 1/2mu2

kT ).
Equation 24 is independent of position and should apply everywhere in space.
We can now introduce the probability distribution function: f(v) such that
f(v)dv will be the probability that the particles have a velocity between v and
v + dv. Equation 24 sets a constraint on f(v). But the number of particles
crossing a given plane per unit time, T , with speed v > u are not just:

N(v>u) 6∝
∫ ∞
u

f(v)dv (25)
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as one could intuitively think, since this would not take into account that within
a unit time T , particles with velocity v will only cross the plane if they’re within
a distance vT beneath the plane (slow ones have to be closer than fast ones).
For a given velocity v, the number of particles a distance vT below the plane
would be ∝ (vT )f(v), therefore, for all v > u we have the equation:

N(v>u) ∝
∫ ∞
u

vf(v)dv ∝ e−1/2mu2

kT (26)

Using the normalization:
∫∞
−∞ f(v)dv = 1, Equation 26 leads to:

f(v) =

√
m

2πkT
e−

mv2

2kT (27)

We can extend this to 3-dimensional velocity space as:

f(vx, vy, vz) =
( m

2πkT

)3/2

e

[
−

m(v2
x+v2

y+v2
z)

2kT

]
(28)

We now bring back the (x, y, z) dependence: From Equation 20, we can separate
the distribution function into a positional component and a velocity-dependent
component:

f(x, y, z, vx, vy, vz) = f~x(x, y, z)f~v(vx, vy, vz) (29)

with a normalization:∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(x, y, z, vx, vy, vz)dvxdvydvz = n(x, y, z) (30)

Leading to the full Maxwell-Boltzmann distribution function:

f(x, y, z, vx, vy, vz) = n(x, y, z)
( m

2πkT

)3/2

e

[
−

m(v2
x+v2

y+v2
z)

2kT

]
(31)

What Equation 31 says is that the velocity of the particles are distributed
in a Gaussian or bell curve with a width proportional to the temperature of the
gas. Or, put it another way, the width of distribution in velocity space is what
gives rise to the concept of temperature of a gas.

If we want to study the speed distribution of the particles, v ≡ |v| ≡
√
v2
x + v2

y + v2
z ,

we find the more typical form of the the Maxwell-Boltzmann distribution func-
tion:

f(v) = 4πn0

( m

2πkT

)3/2

v2e

[
−mv2

2kT

]
(32)

an example of which is shown in Figure 4 (note that the density has been taken
as homogeneous, n0, to simplify the analysis). As is clear, the temperature
of the gas is related to the width of the distribution as well as to the average
speed vmean =

√
3kT/m, and the most probable speed (the peak of the curve)
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Figure 4: Maxwell-Boltzmann distribution function of Argon gas at different
temperatures. The x̂-axis is proportional to the speed of the atoms. Note that
the area under the curve must be 1.

vpeak =
√

2kT/m. There is, therefore, a characteristic speed of the particles
which we call the thermal speed defined as:

vt ≡
√
kT

m
(33)

Now, the electrons and ions will have their own thermal speeds given by: vte =√
kTe/me and vti =

√
kTi/mi. How do these speeds typically compare?

Let’s say an electron and an ion are getting energy from an electric field (which
is often the case) for a given amount of time t. The momentum gained by both
particles is the same: meve = mivi = eEt. so ve/vi = mi/me � 1. This
disparity translates to vte and vti hence, if energy transfer between species is
low, Te/Ti ∝ mi/me � 1. Note that even if the particles have enough time
to reach thermal equilibrium, which is more common in magnetically confined
plasmas, Te = Ti still leads to vte � vti.

4.3 Debye Length

We can go back to our thought experiment with the added knowledge of the
plasma thermal speeds. The first, and easiest way, of arriving at the Debye
length is to do a dimensional analysis of what we’ve already acquired. We’ve
found a characteristic [time] in the ωp, and we’ve found a characteristic speed,
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or [length]/[time] in vt. Therefore, we can immediately deduce a characteristic
length called the Debye length:

λD ≡
vt
ωp

=

√
kT
m√
q2n
mε0

=

√
kTε0
q2n

(34)

More generally, the Debye length for a single species ion of charge Ze is defined
as:

λD =

√
kε0

e2 (ne/Te + Z2ni/Ti)
(35)

which can be derived from a more detailed analysis of Poisson’s equation to be
explored later. Nonetheless, when we can take the ions as stationary (particu-
larly in weakly ionized cold plasmas), the Debye length is effectively taken as
the electron Debye length:

λD =

√
kTeε0
e2ne

. (36)

To get a more intuitive picture of what the Debye length is related to, we can
go back to the thought experiment where we now have a picture of an electron
that is subject to a simple harmonic oscillator system. If we were to follow the
motion of the electron in this simple picture, it would follow a harmonic motion
of the form:

x = A cos (ωpet) (37)

where I have disregarded any phase and I still haven’t determined it’s amplitude.
How can we determine the amplitude A of oscillation? If we take the time
derivative of Equation 37, we can find the velocity of the electron:

v = −Aωpe sin (ωpet) (38)

But we know that the speed of the electrons is around vthe (of course, this is a
characteristic speed), so we can use that as the constraint and we have

Aωpe = vte → A = vte/ωpe ≡ λDe. (39)

Where we have recovered the result found from dimensional analysis.

We can derive the Debye length more rigorously by assuming a system
wherein a point charge Q is immersed in a steady state plasma (see Figure
5). We can explore the electric potential Φ(r) by using Poisson’s equation:

∇2Φ(r) = − 1

ε0
ρ = − 1

ε0
(ρc + ρp) (40)

Where the point charge is located a the origin, hence it creates a charge den-
sity of ρc = Qδ(r = 0), ρp is the charge density created by the plasma, which

9



Figure 5: The charge density of a system with a point charge Q immersed in a
plasma

we assume is composed of electrons and a single species of ions of charge Ze:
ρp = ρi + ρe = e(Zni − ne) and Φ(r) is the electric potential, which, because of
the symmetry of the system, we take as only a function of the radial position,
r, around the point charge. Since the electrons and ions have a potential en-
ergy of −eΦ and ZeΦ respectively, we can use Equation 19 assuming thermal
equilibrium within each species:

ne = n0ee
eΦ
kTe (41)

ni = n0ie
−ZeΦ
kTi (42)

where n0e and n0i are the electron and ion densities far from the point charge
(Φ→ 0) where quasi-neutrality prevails, so n0e = Zn0i. Assuming eΦ� kT :

ne ≈ n0e

(
1 +

eΦ

kTe

)
(43)

ni ≈ n0i

(
1− ZeΦ

kTi

)
(44)

ρp ≈ −e
(
n0e +

en0eΦ

kTe
− Zn0i +

Z2enoiΦ

kTi

)
(45)

ρp ≈ −e
2Φ

k

(
n0e

Te
+
Z2noi
Ti

)
(46)

combining Equations 40 and 46, we have:

∇2Φ(r) =
e2

kε0

(
n0e

Te
+
z2noi
Ti

)
Φ(r)− Q

ε0
δ(0) =

(
1

λ2
D

)
Φ(r)− Q

ε0
δ(0) (47)

where we have used the definition of Debye length from Equation 35. We can
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Figure 6: The plasma shields the point charge and lowers the electric potential
close to the charge

rewrite this equation as: (
∇2 − 1

λ2
D

)
Φ(r) = − e

ε0
δ(0) (48)

before we solve this, note that if the second term in the LHS were not there, we
would recover the equation for the electric potential of a point charge: Φc(r) =
Q

4πε0r
. The solution of Equation 48 is of the form:

Φ(r) =
Qe−(r/λD)

4πε0r
(49)

Figure 6 illustrates the effect the presence of the plasma has on the potential
as compared to a point charge in empty space. In the presence of a positive
charge, the electrons will quickly try to shield it, but since they are moving so
fast (vte) and in all directions, there is a region close to the charge where the
electrons will escape (due to their own inertia) and not completely shield it.
This region, where the electric fields are not completely shielded, is called the
sheath and its length is of the order of the Debye length.
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System ne[m
−3] Te[eV ] ωpe[s

−1] λD[m]

Interstellar gas 106 1 105 10
Solar Wind 107 10 105 10

Van Allen belts 109 102 106 1
Ionosphere 1011 10−1 107 10−2

Solar Corona 1013 102 108 10−3

Candle flame 1014 10−1 109 10−4

Neon lights 1015 1 109 10−4

Gas Discharge 1018 2 1011 10−5

Process Plasma 1018 102 1011 10−4

Fusion Experiment 1019 103 1011 10−4

Fusion Reactor 1020 104 1012 10−4

Lightning 1024 3 1014 10−8

Electrons in metal 1029 10−2 1016 10−12

Table 1: Plasma Frequency and Debye length for various systems

5 Plasma frequency and Debye length for vari-
ous plasma systems

In Table 1 it’s possible to view the wide range of density and temperature where
plasma exists. The plasma frequency and Debye length has been calculated to
give a sense of the characteristic parameters in the systems.

The Electrons in metal case leads to an interesting discussion, outlined in
Feynman’s Lectures on Physics VII 32-7 (linked in the pdf) where the reflection
and transparency of metals to electromagnetic waves can be viewed through the
lens of plasma: Visible light has a frequency of ∼ 5× 1014Hz whereas xrays, for
example, have a frequency of ∼ 1016 − 1019Hz.
Finally, as illustrated in Figure 7 the ωpe of the ionosphere (107Hz) leads to
distinct behavior between AM and FM radio waves. It explains the reflection of
AM waves (where ω < ωpe) and the penetration of FM waves (where ω > ωpe).

5.1 Collisional frequency

The final parameter to consider in an unmagnetized plasma is the frequency of
collisions. I’ll focus on electron-electron collisional frequency (noted hereafter
as νe) but most of the dependencies and arguments are identical in ion-ion and
electron-ion collisions.

The first step is to define two quantities: the time between collisions which
is the inverse of the collisional frequency, ∆t = 1/νe and the mean free path,
λmfp. As we’ve seen before, the electrons are traveling at a characteristic speed
of vthe, therefore, we can define:

λmfp = vthe∆t = vthe/νe (50)
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Figure 7: The AM spectrum is well below the ≈ 10MHz ωpe of the ionosphere,
leading to their reflection. FM waves, at higher frequency, penetrate it.

Figure 8: The volume associated with an individual electron is given by ∆V =
1/ne.
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as the distance traveled by an electron (on average) before it collides with an-
other electron.
Every electron has an associated volume in the system ∆V = 1/ne, that is, ∆V
is the volume that is occupied by each electron. Therefore, we can define the
electron-electron cross section, σee, with the equation ∆V = σeeλmfp, as shown
in Figure 8. Therefore, using Equations 50 and 33:

νe = nevtheσee. (51)

An estimate of the cross section can be made by observing that an electron-
electron collision is really a Coulomb repulsion interaction. The distance of
closest approach, b, between colliding electrons can be taken as the radius of
the cross section, that is:

σee ≈ πb2. (52)

While the actual distance of closest approach between two colliding electrons
depends on relative velocities and angles of approach (and a rigorous derivation
would take all possible angles and velocities into account and weight them ac-
cording to the distribution function), we can make a heuristic case and assume
a typical configuration of an electron approaching a stationary electron head on
with a speed of vthe as in Figure 9. As shown in the figure, in the center of mass
frame, each electron is approaching the other with speeds vthe/2 and at closest
approach, they are separated by b. From conservation of energy, assuming that
the electrons are very far from each other at the beginning:

me(vthe/2)2

2
+
me(vthe/2)2

2
=

e2

4πε0b
(53)

b =
e2

πε0mev2
the

=
e2

πε0Te
. (54)

Not surprisingly, the larger the temperature, the closer the electrons can ap-
proach. Putting Equations 54 together with 52 and 51, we get the final result:

νe ∝ ne
(√

Te/me

)( e2

Te

)2

=
nee

4

m
1/2
e T

3/2
e

(55)

since we know that many assumptions have been made, we’ve disregarded the
constants.
Since the resistivity, η, is proportional to the collisional frequency, we get the
very important result:

η ∝ T−3/2
e (56)

that is, the plasma becomes a better conductor as the temperature goes up.
This dependance is of great importance in astrophysical plasmas as well as in
tokamak plasmas.
As a point of comparison, the resistivity in a metal is well known to increase
with temperature (contrary to the case in plasmas).
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Figure 9: An electron with speed vthe colliding with a stationary one can be
viewed in the center of mass frame and the distance of closest approach can be
derived from conservation of energy.

6 Magnetized plasmas

Finally, we’ll do a small introduction to what happens when we incorporate
effects of magnetic fields on the plasma. As shown in Equation 5, the force of a
particle which is moving in a magnetic field is of the form:

~F = m~a = q~v × ~B → ~a =
q

m
(~v × ~B) (57)

Suppose a positively charged particle of mass m and charge q is moving in
the plane of the paper with velocity ~v and there is a magnetic field ~B pointing
into the paper. As shown in Figure 10, the force, hence the acceleration of the
particle is always pointing towards a center of motion and the particle draws a
circular orbit in the plane. From Equation 57, the magnitude of the acceleration
is a = qvB/m. But we know from kinematics that if a particle is rotating around
a fixed point, the acceleration must be centripetal and the magnitude should
be:

a =
v2

r
=
qvB

m
→ r =

vm

qB
(58)

If the particle that is rotating is an electron (ion) with speed vte (vti) then the
radius of rotation is called the electron (ion) gyro-radius or Larmor radius and
the equations are as follows:

ρe =
mevte
eB

, ρi =
mivti
ZeB

(59)

Finally, we can figure out the frequency of rotation of an electron or ion that is
rotating at thermal speeds: vt = ωcρ. These frequencies are very important in
magnetized plasma physics and are called electron and ion gyro-frequencies (or
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Figure 10: Trajectory of a positively charged particle moving with a velocity ~v
where there is a magnetic field pointing into the page.

cyclotron frequencies):

ωce =
vte
ρe

=
vte
mevte
eB

=
eB

me
, ωci =

ZeB

mi
(60)

If the particles are not confined to the plane perpendicular to the magnetic
fields but can move in three dimensions, the particles move freely in the direc-
tion parallel to the magnetic field but are confined to move in circular orbits
perpendicular to the fields, therefore, they trace spiral orbits around the mag-
netic fields, as shown in Figure 11.
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electron

Ion

Figure 11: In three dimensions, particles follow spiral trajectories around mag-
netic fields.
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